第34题
(矩阵变换)有一个奇幻的矩阵,在不停的变幻,其变幻方式为:数字 0 变成矩阵 ,数字 1 变成矩阵 。最初该矩阵只有一个元素 0,变幻 n 次后,矩阵会变成什么样?
例如,矩阵最初为:[0];矩阵变幻一次后:;矩阵变幻 2 次后:。
输入一行一个不超过 10 的正整数 n。输出变幻 n 次后的矩阵。
试补全程序。
提示:
<< 表示二进制左移运算符,例如 (11)2<<2=(1100)2。
而 ^ 表示二进制异或运算符,它将两个运算的数中的每个对应的二进制位一一进行比较,若两个二进制位相同,则运算结果的对应二进制位为 0,反之为 1。
#include <cstdio>
using namespace std;
int n;
const int max_size = 1 << 10;
int res[max_size][max_size];
void recursive(int x, int y, int n, int t) {
if (n == 0) {
res[x][y] = ①;
return;
}
int step = 1 << (n - 1);
recursive(②, n - 1, t);
recursive(x, y + step, n - 1, t);
recursive(x + step, y, n - 1, t);
recursive(③, n - 1, !t);
}
int main() {
scanf("%d", &n);
recursive(0, 0, ④);
int size = ⑤;
for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++)
printf("%d", res[i][j]);
puts("");
}
return 0;
}
① 处应填( )