蜂巢由大量的六边形拼接而成,定义蜂巢中的方向为:0 表示正西方向,1 表示西偏北 60◦,2 表示东偏北 60◦,3 表示正东,4 表示东偏南 60◦,5 表示西偏南 60◦。
对于给定的一点 O,我们以 O 为原点定义坐标系,如果一个点 A 由 O 点先向 d 方向走 p 步再向 (d + 2) mod 6 方向(d 的顺时针 120◦ 方向)走 q 步到达,则这个点的坐标定义为 (d, p, q)。在蜂窝中,一个点的坐标可能有多种。
下图给出了点 B(0, 5, 3) 和点 C(2, 3, 2) 的示意。
给定点 (d1, p1, q1) 和点 (d2, p2, q2),请问他们之间最少走多少步可以到达?
0 5 3 2 3 2
7
第十三届蓝桥杯真题(基础部分,适合所有同学),已经确定报名名单的同学一定要参加,欢迎其他同学积极练习...................................