3143 问题 D: 蓝桥杯2023年第十四届省赛真题-更小的数

时间限制: 1s 内存限制: 256MB 提交: 9988 解决: 395
题目描述

蓝桥杯2023年第十四届省赛真题-更小的数


小蓝有一个长度均为 n 且仅由数字字符 0 ∼ 9 组成的字符串,下标从 0 到 n − 1,你可以将其视作是一个具有 n 位的十进制数字 num,小蓝可以从 num 中选出一段连续的子串并将子串进行反转,最多反转一次。小蓝想要将选出的子串进行反转后再放入原位置处得到的新的数字 numnew 满足条件 numnew < num,请你帮他计算下一共有多少种不同的子串选择方案,只要两个子串在 num 中的位置不完全相同我们就视作是不同的方案。

注意,我们允许前导零的存在,即数字的最高位可以是 0 ,这是合法的。

输入

输入一行包含一个长度为 n 的字符串表示 num(仅包含数字字符 0 ∼ 9),

从左至右下标依次为 0 ∼ n − 1。

输出

输出一行包含一个整数表示答案。

样例输入
210102
样例输出
8
提示

一共有 8 种不同的方案:

1)所选择的子串下标为 0 ∼ 1 ,反转后的 numnew = 120102 < 210102 ;

2)所选择的子串下标为 0 ∼ 2 ,反转后的 numnew = 012102 < 210102 ;

3)所选择的子串下标为 0 ∼ 3 ,反转后的 numnew = 101202 < 210102 ;

4)所选择的子串下标为 0 ∼ 4 ,反转后的 numnew = 010122 < 210102 ;

5)所选择的子串下标为 0 ∼ 5 ,反转后的 numnew = 201012 < 210102 ;

6)所选择的子串下标为 1 ∼ 2 ,反转后的 numnew = 201102 < 210102 ;

7)所选择的子串下标为 1 ∼ 4 ,反转后的 numnew = 201012 < 210102 ;

8)所选择的子串下标为 3 ∼ 4 ,反转后的 numnew = 210012 < 210102 ;


对于 20% 的评测用例,1 ≤ n ≤ 100 ;

对于 40% 的评测用例,1 ≤ n ≤ 1000 ;

对于所有评测用例,1 ≤ n ≤ 5000 。


比赛公告

第十四届蓝桥杯(省赛)真题2(难度有所提高),已经确定报名名单的同学一定要参加,欢迎其他同学积极练习...................................