题目 2524:
信息学奥赛一本通T1626-Hankson 的趣味题
时间限制: 2s
内存限制: 192MB 提交: 15 解决: 9
题目描述
Hanks 博士是 BT(Bio-Tech,生物技术)领域的知名专家,他的儿子名叫 Hankson。现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题。
今天在课堂上,老师讲解了如何求两个正整数 c1和 c2 的最大公约数和最小公倍数。现在 Hankson 认为自己已经熟练地掌握了这些知识,他开始思考「求公约数」和「求公倍数」这类问题的一个逆问题,这个问题是这样的:已知正整数 a0,a1,b0,b1 ,设某未知正整数 x 满足:
x 和 a0的最大公约数是 a1 ;
x 和 b0的最小公倍数是 b1 。
Hankson 的「逆问题」就是求出满足条件的正整数 x 。但稍加思索之后,他发现这样的 x 并不唯一,甚至可能不存在。因此他转而开始考虑如何求解满足条件的 x 的个数。请你帮助他编程求解这个问题。
输入格式
第一行为一个正整数 n ,表示有 n 组输入数据。
接下来的 n 行每行一组输入数据,为四个正整数 a0,a1,b0,b1 ,每两个整数之间用一个空格隔开。
输入数据保证 a0 能被 a1 整除,b1 能被 b0 整除。
输出格式
共 n 行。每组输入数据的输出结果占一行,为一个整数。
对于每组数据:若不存在这样的 x,请输出 0;若存在这样的 x,请输出满足条件的 x 的个数。
样例输入
2
41 1 96 288
95 1 37 1776
提示
样例说明
第一组输入数据,x 可以是 9,18,36,72,144,288,共有 6 个;
第二组输入数据,x 可以是 48,1776,共有 2 个。
数据范围与提示:
对于 50% 的数据,保证有 a0,a1,b0,b1≤104, 且 n≤100。
对于 100% 的数据,保证有 1≤a0,a1,b0,b1≤2×109,且n≤2000。