给定一个 N×N 的方形网格,设其左上角为起点◎,坐标为 (1,1) ,X 轴向右为正, Y 轴向下为正,每个方格边长为 1 ,如图所示。
一辆汽车从起点◎出发驶向右下角终点▲,其坐标为 (N,N)。
在若干个网格交叉点处,设置了油库,可供汽车在行驶途中加油。汽车在行驶过程中应遵守如下规则:
汽车只能沿网格边行驶,装满油后能行驶 K 条网格边。出发时汽车已装满油,在起点与终点处不设油库。
汽车经过一条网格边时,若其 X 坐标或 Y 坐标减小,则应付费用 B ,否则免付费用。
汽车在行驶过程中遇油库则应加满油并付加油费用 A。
在需要时可在网格点处增设油库,并付增设油库费用 C (不含加油费用 A )。
N,K,A,B,C 均为正整数, 且满足约束: 2≤N≤100,2≤K≤10。
设计一个算法,求出汽车从起点出发到达终点的一条所付费用最少的行驶路线。
第一行是 N,K,A,B,C的值。
第二行起是一个N×N 的 0-1 方阵,每行 N 个值,至 N+1 行结束。
方阵的第 i 行第 j 列处的值为 1 表示在网格交叉点 (i,j) 处设置了一个油库,为 0 时表示未设油库。各行相邻两个数以空格分隔。
9 3 2 3 6 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0
12
数据范围:
2≤n≤100
2≤k≤10